首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   17篇
地球物理   29篇
地质学   49篇
海洋学   6篇
天文学   18篇
自然地理   8篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   5篇
  2009年   17篇
  2008年   11篇
  2007年   15篇
  2006年   9篇
  2005年   9篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1998年   1篇
排序方式: 共有128条查询结果,搜索用时 359 毫秒
11.
Two downburst events from one thunderstorm are investigated, which occurred on 23 March 2001, in Germany's climatologic annual minimum of downburst activity. Observations by two Doppler radars are combined with hail reports, ground lightning detection and an aerial survey conducted after the event. The downburst-producing storm had formed at a synoptic convergence line within the warm sector of a cyclone. It had a remarkably high propagation speed of up to 31 m s− 1 corresponding to the mid-tropospheric flow. Thus, by superposition with the storm motion, even two weak downbursts were sufficient to cause the observed damage of F1 and F2 intensity, respectively. While in its late stages, the storm was dynamically characterized by lower- and mid-tropospheric divergence; at about the time of the first downburst, a mesocyclonic vortex signature was verified. Aside from mid-tropospheric dry air entrainment, a thermodynamic explanation for the triggering of the two downbursts by melting of small hail according to recent findings by Atlas et al. [Atlas, D., Ulbrich, C.W., Williams, C.R., 2004. Physical origin of a wet microburst: observations and theory. J. Atmos. Sci. 61, 1186–1196] appears probable. Despite the lack of warnings to the public, the storm's potential for hail and strong straight-line winds was detected by the German weather service radar software CONRAD more than a half hour before the downbursts occurred.  相似文献   
12.
13.
The precise estimation of precipitation quantities in tropical mountain regions is in great demand by ecological and hydrological studies, due to the heterogeneity of the rainfall distribution and the lack of meteorological station data. This study uses radar images and ground station data to provide the required high-resolution precipitation maps. Also wind data are taken into account, due to its influence on the precipitation formation and to demonstrate the relation between synoptic wind, topography and the precipitation distribution inside small mountain valleys. The study analyses the rainfall distribution and amounts of 4 days inside the San Francisco Valley, a small catchment in the tropical Andes of southern Ecuador, representing different seasons and the typical atmospheric flows, which are correlated to the annual precipitation map. The results show that the rainfall distribution and amounts are generally defined by the wind direction and velocity, besides the topographic location in relation to the main barriers and pathways. The dominant wind direction causes a division of the catchment in a wetter eastern and a dryer western part. Moreover, the annual seasons are reversed; the main rainy season for the eastern part occurs between June and August, while the western part reaches the precipitation maximum between January and March. This may have influence on the species composition at the different slopes and the annual hydrological cycle inside the catchment.  相似文献   
14.
ABSTRACT Palaeoceanographic reconstructions from the North Atlantic indicate massive ice breakouts from East Greenland near the onset of cold Dansgaard–Oeschger (D–O) stadials. In contrast to these coolings in the North Atlantic area, a new sea-surface temperature record reveals concomitant warm spells in the northern North Pacific. A sensitivity experiment with an atmospheric general circulation model is used to test the potential impact of sea-surface warmings by 3.5 °C in the North Pacific, on top of otherwise cold stadial climate conditions, on the precipitation regime over the Northern Hemisphere ice sheets. The model predicts a maximum response over East Greenland and the Greenland Sea, where a 40% increase in net annual snow accumulation occurs. This remote effect of North Pacific warm spells on the East Greenland snow-accumulation rate may play an important role in generating D–O cycles by rebuilding the ice lost during ice breakouts. In addition, the increased precipitation over the Greenland Sea may help to sustain the D–O stadial climate state.  相似文献   
15.
An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.  相似文献   
16.
We investigate the flow over Arctic leads using a mesoscale numerical model, typical of both summer and winter, under idealised conditions. We find that Arctic leads may be the source of standing atmospheric internal gravity waves during both seasons. The summertime wave may be compared with the wave generated by a small ridge, though with the phase reversed. The mechanism for exciting the wave is found to be the internal boundary layer developing due to horizontal variations in surface temperature and roughness length. During the more exploratory wintertime simulations, with substantial temperature difference between the lead and the ice surface, we find that secondary circulations and intermittent wave-breaking may occur. The effects of the lead appear far downstream.  相似文献   
17.
18.
19.
20.
Comparative analysis of the energy and carbon balances of wood vs. non-wood products is a complex issue. In this paper we discuss the definition of an appropriate functional unit and the establishment of effective system boundaries in terms of activity, time and space, with an emphasis on the comparison of buildings. The functional unit can be defined at the level of building component, complete building, or services provided by the built environment. Energy use or carbon emissions per unit of mass or volume of material is inadequate as a functional unit because equal masses or volumes of different materials do not fulfil the same function. Activity-based system boundaries include life cycle processes such as material production, product operation, and post-use material management. If the products compared are functionally equivalent, such that the impacts occurring during the operation phase are equal, we suggest that this phase may be dropped from the analysis allowing a focus on material flows. The use of wood co-products as biofuel can be analytically treated through system expansion, and compared to an alternative of providing the same energy service with fossil fuels. The assumed production of electricity used for material processing is another important energy-related issue, and we suggest that using marginal production data is more appropriate than average production. Temporal system boundaries include such aspects of the wood life cycle as the dynamics of forest growth including regeneration and saturation, the availability of residue biofuels at different times, and the duration of carbon storage in products. The establishment of spatial boundaries can be problematic, because using wood-based materials instead of non-wood materials requires more land area to capture solar energy and accumulate biomass. We discuss several possible approaches to meet this challenge, including the intensification of land use to increase the time rate of biomass production. Finally, we discuss issues related to scaling up an analysis of wood substitution from the micro-level to the macro-level of national, regional or global.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号